Application of a new reduction method for contact problems

3rd International Conference
Dynamic Simulation in Vehicle Engineering,
22 – 23 May 2014, St. Valentin, Austria

Markus Breitfuss,
Engineering Center Steyr GmbH & Co KG
(markus.breitfuss@ecs.steyr.com)
Dynamic Simulation in Vehicle Engineering

Content

• **Motivation**
 Dynamic Simulation of Jointed Structures

• **Generic Example**
 Simulation Process Details

• **Industrial Applications**
 Door Slam Simulation
 Body In White (BIW) Investigations
Dynamic Simulation in Vehicle Engineering
Fatigue assessment based on simulation

• Prediction of the fatigue performance
 – Very important step during the development process
 – Physical tests need to be carried out
 – Reliable simulation results are essential for cutting costs

• Dynamic simulation is very demanding in terms of
 – Modeling
 – Computational effort
 – Amount of result data
 – Result evaluation
• Handling of joints is a challenging task
 – Nonlinearities are introduced by flange contact
 – These local nonlinearities have global influence
 • Stiffness
 • Load distribution
 • Energy dissipation
Dynamic Simulation in Vehicle Engineering

How to handle joints?

- **Large effort when utilizing conventional simulation**
 - Direct FEM causes high computational effort
 - Modal approach leads to moderate accuracy

- **New method available**
 - Reduced order modeling based on FEM models
 - Contact consideration during MBS simulation
Dynamic Simulation in Vehicle Engineering

Generic example: bolted cantilever

- **FEM structure**
 - Two solid substructures
 - Bolted connection
 - 2 000 elements and 3 000 nodes

- **Boundary and loading conditions**
 - Structure fixed with respect to ground
 - Bolt pretension
 - Force at free end of beam substructure
Dynamic Simulation in Vehicle Engineering

How is the model order reduction done?

- The flexible structure is represented by mode shapes
 - Mode base according to Craig and Bampton is extended by JIMs

Constraint modes (CM)

\[
\tilde{\psi}_{CM} = \begin{bmatrix} \tilde{1}_{c,b} \\ \tilde{\psi}_{c,i} \end{bmatrix}
\]

Fixed boundary normal modes (FBNM)

\[
\tilde{\Phi}_{FBNM} = \begin{bmatrix} \tilde{0}_{n,b} \\ \tilde{\Phi}_{n,i} \end{bmatrix}
\]

Joint interface modes (JIM)

\[
\tilde{\psi}_{JIM} = \begin{bmatrix} \tilde{0}_{JIM,b} \\ \tilde{\psi}_{JIM,i} \end{bmatrix}
\]

\[
\bar{x} = \begin{bmatrix} \tilde{1}_{c,b} & \tilde{0}_{n,b} & \tilde{0}_{JIM,b} \\ \tilde{\psi}_{c,i} & \tilde{\Phi}_{n,i} & \tilde{\psi}_{JIM,i} \end{bmatrix} \begin{bmatrix} \tilde{1} \\ \tilde{\psi} \end{bmatrix}_{\text{extended}}
\]
Dynamic Simulation in Vehicle Engineering

Simulation process for fatigue assessment

Flexible Structure using **MSC Nastran** and [MAMBA](#)

MBS Simulation using **MSC Adams** and [MAMBA](#)

Fatigue assessment using [FEMFAT](#)

Flexible Structure

- Modal Coordinates
 - q_1
 - q_2
 - q_n

Modal Stresses

- σ_1
- σ_2
- σ_n

Channel 1

- σ_1
- q_1

Channel 2

- σ_2
- q_2

Channel n

Date: May 2014
Author: MAMBA Development Team
© ECS / Disclosure or duplication without consent is prohibited
Dynamic Simulation in Vehicle Engineering
Simulation process including bolt pretension

- **Bolt Pretension Characteristics**
 - Flexible structure is prepared for arbitrary pretension values
 - Influence of pretension is considered during the MBS simulation

Flexible Structure using **MSC Nastran** and **MAMBA**

Bolt pretension using MAMBA Preprocessor

Pretensioned Structure using **MSC Adams** and **MAMBA**

MBS Simulation using **MSC Adams** and **MAMBA**

© ECS / Disclosure or duplication without consent is prohibited
Dynamic Simulation in Vehicle Engineering
How is pretension considered?

• Bolt Pretension
 – Arbitrary shaft model, e.g. using CBEAM elements
 – Arbitrary bolt and nut model, e.g. using RBE3 elements

Bolt model characteristics
✓ 1 Shaft CBEAM elements
✓ 2 RBE3 elements which represent head and nut
Dynamic Simulation in Vehicle Engineering
Good convergence with respect to number of JIMs

• Normal stresses due to pretension and applied load
 – Adams and MAMBA subroutine for contact
 – FEM reference solution
Dynamic Simulation in Vehicle Engineering

How is friction considered?

- **Local Behavior**
 - Coulomb type friction relation
 - Parametrized by stiction stiffness and friction coefficient

Force law characteristics

1. Stiction stiffness
2. Stiffness discontinuities
3. Stiction limit depends on friction coefficient and current contact pressure
Dynamic Simulation in Vehicle Engineering

How is the global influence of friction?

- **Global Behavior**
 - Characteristic hysteresis loop
 - Hysteresis shape is parameter and contact pressure (pretension) dependent

![Diagram of global relative movement of jointed structures](image)

Hysteresis characteristics
- 1 – 2 and 4 – 5
 - Stiction of jointed structures
- 2 – 3 and 5 – 6
 - Micro slip within joint
- 3 – 4 and 6 – 1
 - Macro slip within joint
Dynamic Simulation in Vehicle Engineering
Friction in surface tangential direction

- Stick-Slip within joint in case of longitudinal deflection
 - Reaction force is significant for friction within joint
 - Plotting force vs. deflection shows characteristic hysteresis loop
 - Shape of hysteresis loop depends on pretension
Dynamic Simulation in Vehicle Engineering

Industrial application: vehicle door slam

- Flexible MBS is particularly suitable for this task
 - Large displacement
 - Small elastic deformations
 - Highly dynamic test scenario

- Flexible MBS implies questions
 - Is it possible to consider contact?
 - How is energy dissipation considered?

As a result nonlinear FEM analysis is favored very often
• **Task description**
 – Fatigue assessment of a vehicle door
 – Consideration of contact to weather strip, within latch and within door structure itself
 – Revolving door slams into weather strip and latch (velocity of 2 m/s at latch)

• **Analysis**
 – MBS analysis with MSC Adams and MAMBA for joint contact consideration

Number of modes

- Constraint modes: 18
- Normal modes: 35
- Contact modes (JIM): 377
Vehicle door slam simulation result

- Vehicle door slam considering weather strip
- Latch forces are hidden
Dynamic Simulation in Vehicle Engineering
Joint contact influences deformation

• Exemplary deformation shapes

Linear flexible Structure

Flexible Structure with MAMBA
Dynamic Simulation in Vehicle Engineering
Joint contact influences spot weld damage

• Exemplary damage distribution

Linear flexible Structure

Flexible Structure with MAMBA

Date: May 2014
Author: MAMBA Development Team
© ECS / Disclosure or duplication without consent is prohibited
Dynamic Simulation in Vehicle Engineering
Low computational effort

• Result evaluation can start within 1 hour

For comparison:
40h and 11 CPUs were necessary to obtain **nonlinear FEM solution**
• Fully dynamic MBS simulation with lap joint contact consideration

Door slam
BIW segment (200 sec. simulation)
BIW trailer coupling (600 sec. simulation)
MAMBA software package provides
- An extended order reduction method for FEM models
- Joint contact consideration in flexible MBS simulation

Realistic stress distribution
- Results of Adams utilizing MAMBA are comparable to nonlinear FEM analysis.
- Obtained stresses enable for improved fatigue assessment.

Significantly lowered computational effort
- Adams utilizing MAMBA is significantly faster than nonlinear FEM analysis.
- This enables dynamic simulation of complex structures (e.g. body in white structures) with joint contact consideration and many timesteps.
The future is ours to make.