KADDB ATV DEVELOPMENT PROCESS
AGENDA

• About KING ABDULLAH II DESIGN AND DEVELOPMENT BUREAU.

• Overview.

• KADDB ATV Development Analysis:
 • Requirements and Main Input Parameters.
 • Tractive Effort Calculations.
 • Suspension and Steering System Design.
 • Structure Design.
 • Finite Element Analysis (FEA).
 • Manufacturing

• Challenges

• Final Product.
Overview

• Illustration of ATV Development:
 Methodology & steps followed to design and analyze 1st All-Terrain Vehicle (ATV) by KADDB.

• Development Time:
 April 2011.

• Current Status:
 • Final stages of testing & evaluation
 • Presented in SOFEX 2012
KING ABDULLAH II DESIGN AND DEVELOPMENT BUREAU (KADDB)

- Established on the 24th of August 1999 by a royal decree.
- Independent Government entity within JAF.
- Financed by the Jordanian defense vote and own clients.
- JAF’s partner and key provider of defense solutions.
- Main supplier of defense solutions and commercial requirements
KADDB ATV Development Analysis

• **Working Cycle:**

1. **Hard-Points**
2. **Dynamic Simulation**
3. **Finite Element Analysis**
4. **Final Design**
5. **Manufacturing**
6. **Verifications**
7. **Load Cases**
8. **Modifications**

- **CAD Model**
KADDB ATV Development Analysis

- **Requirements and Main Input Parameters:**

 - **Mobility:**
 - **Mobility Category**
 All Terrain Vehicle.
 - **Gradients**
 60%
 - **Turning Circle**
 9m

 - **Load Carriage**
 - **Passengers**
 Two Passengers (Driver Included)
 - **Additional Pay Loads**
 250kg
KADDB ATV Development Analysis

• Requirements and Main Input Parameters:

 • Transport and Recovery:
 • Air Transportability
 • Towing and Recovery.

 • Sub-System Characteristics:
 • Four Wheel Drive System.
 • Identical Four Wheel, Hub and Side Axles.
 • Diesel Fuel
KADDB ATV Development Analysis

Tractive Effort Calculations:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Total Power Required:</th>
</tr>
</thead>
<tbody>
<tr>
<td>GVW (Kg)</td>
<td>1300</td>
<td>26.5 hp.</td>
</tr>
<tr>
<td>Road Speed (km/h)</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Vehicle Frontal Area (m²)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Climbing Gradient</td>
<td>60%</td>
<td></td>
</tr>
</tbody>
</table>
KADDB ATV Development Analysis

- Suspension and Steering System Design:
 - Suspension System:
 - Double Wishbone Suspension.
 - Wheel Travel.
 - Ride Comfort.
 - Steering System:
 - Steering Wheel Effort.
 - Turning Circle.
 - Steering Return-ability.
KADDB ATV Development Analysis

• Suspension and Steering System Design:
 • Dynamic simulation: ADAMS/Car.

• Simulation Process:
 • Kinematics simulation.
 • Parameters curves.
 • Modifying hard points.
KADDB ATV Development Analysis

- Suspension and Steering System Design:
 - Parallel Wheel Travel (Kinematic):
 - Front Suspension:
KADDB ATV Development Analysis

• Suspension and Steering System Design:
 • Parallel Wheel Travel (Kinematic):
 • Rear Suspension:
KADDB ATV Development Analysis

• Suspension and Steering System Design:
 • Steering System:
KADDB ATV Development Analysis

- Suspension and Steering System Design:
 - Steering System:
 - Steering Different Positions:
 - Level.
 - Full Bounce.
 - Full Rebound.
 - Opposite Travel.
KADDB ATV Development Analysis

• Suspension and Steering System Design:
 • Preparing Load Cases:
 • A set of load cases prepared based on the environment affecting the vehicle during applications.
 • Each subcomponent were analyzed (based on the load cases) and verified.
KADDB ATV Development Analysis

- **Structure Design:**
 - Using Autodesk Inventor Package.
 - **Subcomponent Design:**
 - Transferring hard-points into CAD model

Front Knuckle:

Rear Knuckle:
KADDB ATV Development Analysis

- Structure Design:
 - Subcomponent Design:

Front Wishbone UCA: Rear Wishbone UCA:
KADDB ATV Development Analysis

• Structure Design:
 • Prevent structural discontinuity
 • Maintenance accessibility.
 • Strong roll cage offering safety for the crew.
 • Rear Bed for multifunction use or additional payloads.
KADDB ATV Development Analysis

- Structure Design:
 - Subsystem Packaging:
 - Engine and transmission
 - Side axles and drive shafts
 - Front and rear differentials
 - Rack and pinion, steering column and steering wheel
 - Brake system
 - Radiator and cooling fan
 - Electrical systems and dashboard
 - Wheels & tires.
KADDB ATV Development Analysis

- Finite Element Analysis:
 - CAD model preparation:
 - Transfer the solid model into shell surface.
 - Attach the surface model from Autodesk Inventor to ANSYS Design Modeler in order to speedup the iterations and design modifications.
KADDB ATV Development Analysis

- **Finite Element Analysis:**
 - **FE Modeling:**
 - Chassis meshed with shell element.
 - Suspension component meshed with high order solid tetrahedral elements.
 - All welds and bolted joints replaced by bonded contact.
KADDB ATV Development Analysis

- Finite Element Analysis:
 - FE Modeling (Cont.):
 - Inertia relief was applied to all models.
 - S270 steel Material was used for chassis and suspension components.
 - Minimum quoted material yield strength 275MPa was used as comparison to predicted FE stresses.
KADDB ATV Development Analysis

- Finite Element Analysis:
 - Subcomponent Analysis:
 - Front Knuckle (Upright):
 - Baseline
 - New rib
 - Rib extended and widened
 - Notch removed
 - Iteration
KADDB ATV Development Analysis

- Finite Element Analysis:
 - Subcomponent Analysis:
 - Front Knuckle (Upright):

[Images of baseline and iteration models with peak stress markers]
KADDB ATV Development Analysis

- Finite Element Analysis:
 - Subcomponent Analysis:
 - Rear Knuckle (Upright):
 The Peak stress was below yield for all load cases therefore no design modifications were required.
KADDB ATV Development Analysis

- Finite Element Analysis:
 - Subcomponent Analysis:
 - Upper Wishbone Arm (Front):

Pipe Thickness were increased

Baseline

Area has been redesigned by adding material.

Iteration
KADDB ATV Development Analysis

- Finite Element Analysis:
 - Subcomponent Analysis:
 - Upper Wishbone Arm (Front):

![Baseline](image1)

![Iteration](image2)
KADDB ATV Development Analysis

- Finite Element Analysis:
 - Subcomponent Analysis:
 - Upper Wishbone Arm (Rear):
 - Pipe Thickness were increased
 - The Machined Part were redesigned.

Baseline

Iteration
KADDB ATV Development Analysis

- Finite Element Analysis:
 - Subcomponent Analysis:
 - Upper Wishbone Arm (Rear):

![Peak Stress](image)

Baseline

Iteration
KADDB ATV Development Analysis

- Finite Element Analysis:
 - Subcomponent Analysis:
 - Lower Wishbone Arm (Front and Rear):
 The Peak stress was below yield for all load cases therefore no design modifications were required.
KADDB ATV Development Analysis

• Finite Element Analysis:
 • Chassis:

 The Peak Stress exceeds yield in several locations.
KADDB ATV Development Analysis

- Finite Element Analysis:
 - Chassis:
 - The Peak Stress exceeds yield in front damper mount and wishbone attachment point.
KADDB ATV Development Analysis

- **Finite Element Analysis:**
 - **Chassis (Cont.):**
 - Top damper mount and lower wishbone mount both were reinforced using web design to spread loads at the connections with longitudinal tubes.
KADDB ATV Development Analysis

- Finite Element Analysis:
 - Chassis (Cont.):
 The Peak Stress exceeded yield in the connection between flat bed to main roll cage.
KADDB ATV Development Analysis

- Finite Element Analysis:
 - Chassis (Cont.):
 The Peak stress was below yield for all load cases.
KADDB ATV Development Analysis

- Finite Element Analysis:
 - Chassis (Cont.):
 - Extend mount bracket up to flatbed level. Two side supports added.
 - The Peak Stress exceeds yield in rear damper mount.
KADDB ATV Development Analysis

- Finite Element Analysis:
 - Enhance the Approach and Departure Angles:
 - CAD model Modifications:
KADDB ATV Development Analysis

• Finite Element Analysis:
 • Approach Angle 64 deg. instead of 41 deg.
 • Departure Angle 81 deg. instead of 62 deg.
• Finite Element Analysis:
 - Analyzing the effect of this modification on the suspension mount:

 The Peak stress is below yield for all load cases therefore no design modifications were required.
KADDB ATV Development Analysis

- **Manufacturing:**
 - The Chassis was splitted into three main parts, front, rear and intermediate, each part have its own jig.
KADDB ATV Development Analysis

• Manufacturing:

Assembling Jig
Challenges

- Automotive Design experience:
- Limited local market.
- Development Time
Final Product

Final Design

Final Product
Final Product
Questions